医疗人工智能企业做到这三点,系统落地速度或将提升50%!

文章来源: 动脉网 / 砍柴网 / 2019-01-17 21:02作者: 动脉网 / 砍柴网 / 2019-012019-01-21 08:29

导读:

[如何用加速现有人工智能系统的开发和应用,是一大难题

过去两年,医疗人工智能系统取得了突破性的发展,获得了医院和医生的广泛认可。医学影像人工智能发展尤其快速,正广泛应用到肺、心脏、脑、眼科、皮肤等多器官的多种疾病的诊断中。

展望未来,人工智能系统将会改变诊疗模式,提高医疗服务供给能力并提升诊疗水平,促进整个医疗健康行业运营模式的转型。但如何用加速现有人工智能系统的开发和应用,是一大难题。

对此,全球最大的GPU企业NVDIA(英伟达),组织专家团队编撰了《NVDIA医疗AI》这份白皮书,并对医疗人工智能企业给出了以下三项建议:

1、先从医学影像人工智能系统的开发和应用开始,在此基础上,进一步集成更多类型的数据例如病历数据、检验检查数据、患者日常健康监测数据等,从而构建更加丰富和全面的医疗大数据,为开发更丰富的人工智能系统打好基础。

2、随着人工智能技术的不断深入发展,专业性的医疗人工智能平台逐渐涌现出来,建议选用专业性一体化的平台,从而节省平台搭建和调试的工作,更加专注于模型的训练以及系统的应用,同时所开发出的人工智能系统也具有高可靠、高效率的性能。

3、在医院建立专业性医疗人工智能平台的基础上,与医院的临床科室密切合作,选择适合的疾病种类进行其诊断和治疗系统的开发,从而提高诊断和治疗的效果。

事实上,英伟达的这三项建议,是基于现有医疗人工智能系统的开发和运行的三项工作要点。即:建立医疗大数据系统、开发人工智能算法和模型和建立专业的人工智能平台。具体包括:

1、建立能够处理和集成多数据源、多种格式的大数据系统:在医学影像人工智能系统中能够处理多种医疗设备例如CT、MR、X光、超声等输出的影像数据,进行专业的数据标记,以及进行大量的运算。

2、建立专业的深度学习模型,可以选择专业的开源模型也可以自己开发建立模型。模型在深度学习训练和人工智能系统运行中需要不断地升级改进,从而保障模型的精准性和可靠性。

3、建立专业的人工智能算平台,包括硬件平台的搭建和计算系统的建立。整体的平台也可以采用专业性一体化的平台模式,即打包集成了芯片、服务器、计算系统、算法模型软件以及人工智能应用系统和云服务的一体化平台。总之,以提供强大计算能力和可靠稳定性作为建立计算平台的基本原则,同时也能够与深度学习软件顺畅集成,从而提高人工智能系统开发和运行的整体运算性能。

除了前文提到的三项建议,在这份白皮书中,你还能深入了解到目前医疗人工智能在医院的使用状况、医疗人工智能的生态图谱,以及医疗人工智能平台建设的两大模式等信息。以下内容,便节选自这份干货十足的行业白皮书。

想要一窥英伟达授权完整版白皮书,请戳这里!

>>>>医疗人工智能落地医院的使用状况

医疗人工智能在全球的多个国家均在快速发展。截至2018年上半年美国食品药品监督管理局(FDA)已经批准人工智能相关产品9项,包括自动监测预警类产品和辅助诊断类产品,许多医院已经应用了这些产品。日本的医院开始实验和试用人工智能系统,尤其是在影像辅助诊断领域,从而提高日本的医疗服务的供应能力。

中国已有近千家医院部署了人工智能系统,其中超过一半的医院部署了医学影像人工智能系统。目前中国有超过100家医疗人工智能公司,其中约有40家企业属于医学影像AI公司。一些人工智能系统部署在医院内部,直接为临床科室提供辅助支持,例如推想科技的医学影像人工智能系统已经在上海长征医院、武汉同济医院等地部署;一些人工智能系统则是部署在云上,为基层或者西部地区的医院提供远程的辅助诊断服务。

例如万里云“DoctorYou”人工智能医学影像平台可以为几百家基层医院提供远程咨询服务;也有一些系统可以提供给患者使用,例如一些皮肤病人工智能系统可以通过APP来为患者提供辅助诊断服务。

医疗人工智能系统经过初步发展和使用之后已经获得了医生的广泛认可,在IDC的一项针对医院使用医学影像人工智能辅助诊断的调查中,已经部署医学影像AI系统的医院中,对于使用效果总体上满意的比率达到100%;而在被调查的还没有部署人工智能系统的24家医院中,超过35.3%的受访医院计划在未来一年内布署人工智能。

目前中国的医学影像人工智能系统可用于支持多个领域的疾病诊断,以肺结节和肺癌诊断最为常用,腹部肿瘤、心脏疾病、脑疾病、眼科疾病、皮肤病等辅助诊断都在快速发展。目前中国药品监督局(CFDA)正在制定有关医疗人工智能系统作为专业医疗器械的认证规范和条例,目前只有少数几个产品获得了CFDA认证。

即便已经获得了认证,人工智能系统在应用中也需要与其他的医疗设备协作,共同提供诊断依据,而不能单独进行诊断。预计在2018年年底,中国药品监督管理部门将会出台相关标准和规范,用来明确人工智能系统的评估和认证。而当人工智能系统获得了CFDA认证之后,就会进入下一个快速发展的阶段。

>>>>医疗人工智能平台建设

医疗人工智能平台包括数据资源层、人工智能平台和医疗应用层。数据资源层提供基础数据,通过采集各个科室的医疗影像数据,病历数据等,打通业务系统间的数据壁垒,为人工智能平台提供数据基础。

人工智能平台由计算能力,开源框架,算法和技术构成。计算能力为人工智能平台的运算速度提供保障,以肺结节医疗影像数据为例,每位患者平均拥有20-30张片子,在自动识别肺结节时常用的计算机视觉模型如残差神经网络,它可以使数十层甚至上百层的神经网络的训练成为可能,这对计算能力提出了很高的要求,庞大的数据量致使计算机的运算时间变得漫长,因此搭建一个超算平台不仅能缩短运算时间,也能提升医疗的效率,降低患者的等待时间,这在临床应用中可谓至关重要。

除了计算能力外,开源框架和算法的选择也同样占有重要地位,例如选择工程化能力较强的TensorFlow或在图像方面表现良好的Caffe等开源框架,选择在图像识别方面常用的卷积神经网络(CNN),循环神经网络(RNN)算法模型等,这些开源框架和算法的选择影响着医疗人工智能应用效果的呈现。

技术的选择与应用息息相关,在辅助医疗影像诊断应用方面选择适合现有数据质量的图像处理、图像识别的技术,例如在图像质量较差时,采用图像处理中的增加技术提升图像质量等;在语音电子病历应用中选择语音识别、语义理解等技术,帮助医生通过语音输入的方式完成病历的撰写工作。

医疗人工智能平台的建设辅助医疗机构提升服务水平,平衡医疗资源,缓解就医压力,特别是医疗资源匮乏的区域。医疗机构根据自身信息化水平选择不同的建设模式,帮助提升自身的医疗服务水平。

>>>>平台模式一:建设独立的医疗人工智能平台

本文链接:http://www.genyuan.org/zl/2019/0121/50260.html

声明:搜讯网转载稿件,不代表本站观点,若侵权请来信告知,有异议请联系我们;

关注搜讯网微信号

扫描加关注!

搜讯网福利发放

最新热点 更多
相关阅读 更多